Abstract
Hyperspectral imaging is a promising technique for nondestructive sensing of multiple quality attributes of apple fruit. This research evaluated and compared different mathematical models to extract effective wavelengths for measurement of apple soluble solids content (SSC) based on near infrared (NIR) hyperspectral imaging over the spectral region of 1000–2500 nm. A total of 160 samples were prepared for the calibration (n = 120) and prediction (n = 40) sets. Competitive adaptive reweighted sampling (CARS), successive projections algorithm (SPA), random frog (RF), and CARS-SPA, CARS-RF combined algorithms were used for extracting effective wavelengths from hyperspectral images of apples, respectively. Based on the selected effective wavelengths, different models were built and compared for predicting SSC of apple using partial least squares (PLS) and least squared support vector regression (LS-SVR). Among all the models, the models based on the ten effective wavelengths selected by CARS-SPA achieved the best results, with Rp, RMSEP of 0.907, 0.479 °Brix for PLS and 0.917, 0.453 °Brix for LS-SVR, respectively. The overall results indicated that CARS-SPA can be used for selecting the effective wavelengths from hyperspectral data. Both PLS and LS-SVR can be applied to develop calibration models to predict apple SSC. Furthermore, the wavelengths selected by CARS-SPA algorithm has a great potential for online detection of apple SSC.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.