Abstract

To investigate the feasibility of hyperspectral imaging technique in nondestructive determination of soluble solids content (SSC) of fruits produced in different places and bagged with different materials during ripening, the near infrared hyperspectral reflectance images were acquired on 196 ‘Fuji’ apples picked from four orchards in different areas and bagged with polyethylene film or light-impermeable paper. Mean reflectance spectrum from the regions of interest in the hyperspectral image of each apple was extracted. Standard normal variate (SNV) was used to eliminate the effect of instrument and environment on spectra. The sample set partitioning based on joint x–y distances method was applied to divide the samples into calibration set and prediction set as the ratio of 3:1. Successive projection algorithm (SPA) and uninformative variable elimination (UVE) method were used to select effective wavelengths (EWs) from the full spectra. Partial least squares (PLS), least squares support vector machine (LSSVM), and extreme learning machine (ELM) were used to develop SSC determination models. The results showed that 24 and 122 EWs were selected by SPA and UVE, respectively. The selection of EWs was helpful to SSC determination performance improvement. The optimal SSC prediction model was LSSVM based on selected EWs by SPA, with the correlation coefficient and root-mean-square error of prediction set of 0.878 and 0.908 °Brix, respectively. This study indicates that hyperspectral imaging technique could be used to determine SSC of intact apples produced in different places and bagged with different materials during ripening.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call