Abstract

We obtain non-asymptotic Gaussian concentration bounds for the difference between the invariant measure ν of an ergodic Brownian diffusion process and the empirical distribution of an approximating scheme with decreasing time step along a suitable class of (smooth enough) test functions f such that f − ν(f) is a coboundary of the infinitesimal generator. We show that these bounds can still be improved when the (squared) Frobenius norm of the diffusion coefficient lies in this class. We apply these bounds to design computable non-asymptotic confidence intervals for the approximating scheme. As a theoretical application, we finally derive non-asymptotic deviation bounds for the almost sure Central Limit Theorem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.