Abstract

We consider adaptive Bayesian estimation of both drift and diffusion coefficient parameters for ergodic multidimensional diffusion processes based on sampled data. Under a general condition on the discretization step of the sampled data, three kinds of adaptive Bayes type estimators are proposed by applying adaptive maximum likelihood type methods of Uchida and Yoshida (Stoch Process Appl 122:2885–2924, 2012) to Bayesian procedures. We show asymptotic normality and convergence of moments for the adaptive Bayes type estimators by means of the Ibragimov–Has’minskii–Kutoyants program together with the polynomial type large deviation inequality for the statistical random field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.