Abstract
In this paper, we consider the model selection problem for discretely observed ergodic multi-dimensional diffusion processes. In order to evaluate the statistical models, Akaike’s information criterion (AIC) is a useful tool. Since AIC is constructed by the maximum log likelihood and the dimension of the parameter space, it may look easy to get AIC even for discretely observed diffusion processes. However, there is a serious problem that a transition density of a diffusion process does not generally have an explicit form. Instead of the exact log-likelihood, we use a contrast function based on a locally Gaussian approximation of the transition density and we propose the contrast-based information criterion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.