Abstract

The non-Abelian topological order for superconductors is characterized by the existence of zero-energy Majorana fermions in edges of systems and in a vortex of a macroscopic condensate, which obey the non-Abelian statistics. This paper is devoted to an extensive study on the non-Abelian topological phase of spin-singlet superconductors with the Rashba spin-orbit interaction proposed in our previous letter [M. Sato, Y. Takahashi, and S. Fujimoto, Phys. Rev. Lett. 103, 020401 (2009)]. We mainly consider the s-wave pairing state and the d+id pairing state. In the case of d+id-wave pairing, Majorana fermions appear in almost all parameter regions of the mixed state under an applied magnetic field, provided that the Fermi level crosses k-points in the vicinity of the Gamma point or the M point in the Brillouin zone, while in the case of s-wave pairing, a strong magnetic field, the Zeeman energy of which is larger than the superconducting gap is required to realize the topological phase. We clarify that Majorana fermions in Rashba spin-singlet superconductors are much more stable than those realized in spin-triplet p+ip superconductors in certain parameter regions. We also investigate the topological number which ensures the topological stability of the phase in detail. Furthermore, as a byproduct, we found that topological order is also realized in conventional spin (or charge) density wave states with the Rashba spin-orbit interaction, for which massless Dirac fermions appear in the edge of the systems and charge fractionalization occurs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call