Abstract

Names, or object-level variables, are a ubiquitous feature in programming languages and other computational applications. Reasoning with names, and related constructs like binding and freshness, often poses conceptual and technical challenges. Nominal Equational Logic (NEL) is a logic for reasoning about equations in the presence of freshness side conditions. This paper gives a category theoretic account of NEL theories, by analogy with Lawvere's classic correspondence between equational theories and small categories with finite products. This development reveals the abstract structure behind reasoning with equations modulo freshness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.