Abstract
In practical computed tomography (CT) applications, projections with low signal-to-noise ratio (SNR) are often encountered due to the reduction of radiation dose or device limitations. In these situations, classical reconstruction algorithms, like simultaneous algebraic reconstruction technique (SART), cannot reconstruct high-quality CT images. Block-matching and 3D filtering (BM3D)-based iterative reconstruction algorithm (POCS-BM3D) has remarkable effect in dealing with CT reconstruction from noisy projections. However, BM3D may restrain noise with excessive loss of details in the case of low-SNR CT reconstruction. In order to achieve a preferable trade-off between noise suppression and edge preservation, we introduce guided image filtering (GIF) into low-SNR CT reconstruction, and propose noise suppression-guided image filtering reconstruction (NSGIFR) algorithm. In each iteration of NSGIFR, the output image of SART reserves more details and is used as input image of GIF, while the image denoised by BM3D serves as guidance image of GIF. Experimental results indicate that the proposed algorithm displays outstanding performance on preserving structures and suppressing noise for low-SNR CT reconstruction. NSGIFR can achieve more superior image quality than SART, POCS-TV and POCS-BM3D in terms of visual effect and quantitative analysis. Graphical abstract Block-matching and 3D filtering (BM3D)-based iterative reconstruction algorithm (POCS-BM3D) has remarkable effect in dealing with CT reconstruction from noisy projections. However, BM3D may restrain noise with excessive loss of details in the case of low-SNR CT reconstruction. In order to achieve a preferable trade-off between noise suppression and edge preservation, we introduce guided image filtering (GIF) into low-SNR CT reconstruction, and propose noise suppression-guided image filtering reconstruction (NSGIFR) algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Medical & Biological Engineering & Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.