Abstract

Noise label exists widely in real-world data, resulting in the degradation of classification performance. Popular methods require a known noise distribution or additional cleaning supervision, which is usually unavailable in practical scenarios. This paper presents a theoretical statistical method and designs a label confidence inference (LISR) algorithm to handle this issue. For data distribution, we define a statistical function for label inconsistency and analyze its relationship with neighbor radius. For data representation, we define trusted-neighbor, nearest-trusted-neighbor and untrusted-neighbor. For noisy label recognition, we present three inference methods to predict the labels and their confidence. The LISR algorithm establishes a practical statistical model, queries the initial trusted instances, iteratively searches for the trusted instances and corrects labels. We conducted experiments on synthetic, UCI and classic image datasets. The results of significance test verified the effectiveness of LISR and its superiority to the state-of-the-art noise label learning algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.