Abstract

The use of synthetic data in pathology has, to date, predominantly been augmenting existing pathology data to improve supervised machine learning algorithms. We present an alternative use case-using synthetic images to augment cytology training when the availability of real-world examples is limited. Moreover, we compare the assessment of real and synthetic urine cytology images by pathology personnel to explore the usefulness of this technology in a real-world setting. Synthetic urine cytology images were generated using a custom-trained conditional StyleGAN3 model. A morphologically balanced 60-image data set of real and synthetic urine cytology images was created for an online image survey system to allow for the assessment of the differences in visual perception between real and synthetic urine cytology images by pathology personnel. A total of 12 participants were recruited to answer the 60-image survey. The study population had a median age of 36.5 years and a median of 5 years of pathology experience. There was no significant difference in diagnostic error rates between real and synthetic images, nor was there a significant difference between subjective image quality scores between real and synthetic images when assessed on an individual observer basis. The ability of Generative Adversarial Networks technology to generate highly realistic urine cytology images was demonstrated. Furthermore, there was no difference in how pathology personnel perceived the subjective quality of synthetic images, nor was there a difference in diagnostic error rates between real and synthetic urine cytology images. This has important implications for the application of Generative Adversarial Networks technology to cytology teaching and learning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call