Abstract

The benefits of transmission line switching are well-known in terms of reducing operational cost and improving system reliability of power systems. However, finding the optimal power network configuration is a challenging task due to the combinatorial nature of the underlying optimization problem. In this work, we identify a certain “node-based” set that appears as substructure of the optimal transmission switching problem and then conduct a polyhedral study of this set. We construct an extended formulation of the integer hull of this set and present the inequality description of the integer hull in the original space in some cases. These inequalities in the original space can be used as cutting-planes for the transmission line switching problem. Finally, we present the results of our computational experiments using these cutting-planes on difficult test cases from the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.