Abstract
As the modern transmission control and relay technologies evolve, transmission line switching has become an important option in power system operators' toolkits to reduce operational cost and improve system reliability. Most recent research has relied on the DC approximation of the power flow model in the optimal transmission switching problem. However, it is known that DC approximation may lead to inaccurate flow solutions and also overlook stability issues. In this paper, we focus on the optimal transmission switching problem with the full AC power flow model, abbreviated as AC OTS. We propose a new exact formulation for AC OTS and its mixed-integer second-order conic programming (MISOCP) relaxation. We improve this relaxation via several types of strong valid inequalities inspired by the recent development for the closely related AC Optimal Power Flow (AC OPF) problem. We also propose a practical algorithm to obtain high quality feasible solutions for the AC OTS problem. Extensive computational experiments show that the proposed formulation and algorithms efficiently solve IEEE standard and congested instances and lead to significant cost benefits with provably tight bounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.