Abstract

In large-scale scheduling applications, it is often decisive to find reliable schedules prior to the execution of the project. Most of the time however, data is affected by various sources of uncertainty. Robust optimization is used to overcome this imperfect knowledge. Anchor robustness, as introduced in the literature for processing time uncertainty, makes it possible to guarantee job starting times for a subset of jobs. In this paper, anchor robustness is extended to the case where uncertain non-availability periods must be taken into account. Three problems are considered in the case of budgeted uncertainty: checking that a given subset of jobs is anchored in a given schedule, finding a schedule of minimal makespan in which a given subset of jobs is anchored and finding an anchored subset of maximum weight in a given schedule. Polynomial time algorithms are proposed for the first two problems while an inapproximability result is given for the third one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.