Abstract

Biomass-derived carbon (BC) has attracted extensive attention as anode material for lithium ion batteries (LiBs) due to its natural hierarchical porous structure and rich heteroatoms that can adsorb Li+ . However, the specific surface area of pure biomass carbon is generally small, so we can help NH3 and inorganic acid produced by urea decomposition to strip biomass, improve its specific surface area and enrich nitrogen elements. The nitrogen-rich graphite flake obtained by the above treatment of hemp is named NGF. The product that has a high nitrogen content of 10.12% has a high specific surface area of 1151.1 m2 g-1 . In the lithium ion battery test, the capacity of NGF is 806.6 mAh g-1 at 30 mA g-1 , which is twice than that of BC. NGF also showed excellent performance that is 429.2 mAh g-1 under high current testing at 2000 mA g-1 . The reaction process kinetics is analyzed and we found that the outstanding rate performance is attributed to the large-scale capacitance control. In addition, the results of the constant current intermittent titration test indicate that the diffusion coefficient of NGF is greater than that of BC. This work proposes a simple method of nitrogen-rich activated carbon, which has a significantly commercial prospect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.