Abstract

Electrospun carbon–silicon composite nanofiber is employed as anode material for lithium ion batteries. The morphology of composite nanofiber is optimized on the C/Si ratio to make sure well distribution of silicon particles in carbon matrix. The C/Si (77/23, w/w) nanofiber exhibits large reversible capacity up to 1240 mAh g −1 and excellent capacity retention. Ex situ scanning electron microscopy is also conducted to study the morphology change during discharge/charge cycle, and the result reveals that fibrous morphology can effectively prevent the electrode from mechanical failure due to the large volume expansion during lithium insertion in silicon. AC impedance spectroscopy reveals the possible reason of unsatisfactory rate capability of the nanofiber. These results indicate that this novel C/Si composite nanofiber may has some limitations on high power lithium ion batteries, but it can be a very attractive potential anode material for high energy-density lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.