Abstract

Nutrient losses from greenhouse vegetable production systems may impair water quality in the Taihu Lake Region of China. We studied the characteristics of nitrogen (N) lost via runoff from greenhouse vegetable systems and strategies for minimizing N entering water bodies. A two-year experiment at a field scale was conducted to monitor N surface runoff. An eco-ditch (148 m2) and a low N input paddy field (135 kg N ha−1, 550 m2) were designed to remove N from the surface runoff of a 25 × 50 m greenhouse vegetable field. The greenhouse was not covered from late June to mid-October each year, and runoff occurred multiple times during this period. Annual total N loss in runoff from the greenhouse vegetable site was 25.3 and 33.5 kg ha−1 in 2010 and 2011, respectively. Nitrate-N was the major form of N lost in the runoff. The average runoff volume was 289 mm (varied from 221 to 357 mm), which contained 15.7 (varied from 3.3 to 39.2 mg L−1) mg L−1 total N. The eco-ditch system and the wetland paddy field (WPF) effectively reduced total N discharge; the removal rates reached 49.9% and 58.7% and the average removal capacities were 12.4 g N m−2 and 4.1 g N m−2 in 2010 and 2011, respectively. The combined system of the ecological ditch–WPF removed almost 79% total N in the runoff. Ecological ditch or paddy wetland can be a water management option available to growers in this region to economically reduce pollutants in agricultural runoff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.