Abstract

Nitrogen-, phosphorous- and boron-doped carbon nanotubes (N-CNTs, P-CNTs and B-CNTs) were prepared by a chemical vapor deposition method using xylene as carbon source and aniline-NH3, triphenyl phosphine and triethyl borate as nitrogen, phosphorous and boron precursors, respectively. By tailoring the composition of reactants and reaction atmosphere, N-CNTs with nitrogen contents from 0% to 4.36% and P-CNTs with phosphorous contents from 0.55% to 5.14% were synthesized. N- and P-CNTs are active for the oxidation of cyclohexane in the liquid phase with molecular oxygen as oxidant. The highest mass-normalized activity, 761mmolg−1h−1, was achieved over N-CNTs synthesized from aniline in an NH3 atmosphere, while the highest surface-area-normalized activity, 28mmolm−2h−1, was observed over P-CNTs. B-doping does not improve the activity of CNTs. The effect of the number of nitrogen functionalities and defects was investigated to reveal the structure–activity relationship of the doped CNTs. By using the work function as an indicator of the electron donation of carbon, an exponential dependence of specific activity on work function was discovered for N- and P-CNTs, suggesting that the electron transfer on the surfaces of CNTs plays a central role in the CNT-catalyzed oxidation of cyclohexane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.