Abstract
Photocatalytic CO2 reduction to generate high value-added and renewable chemicals is of great potential in facilitating the realization of closed-loop and carbon–neutral hydrogen economy. Stabilizing and accelerating the formation of COCO* intermediate is crucial to achieve high-selectivity ethane production. Herein, a novel 3D/2D NiSe2/g-C3N4 heterostructure that mesoscale hedgehog nickel selenide (NiSe2) grown on the ultrathin g-C3N4 nanosheets were synthesized via a successively high temperature calcination process and in-situ thermal injection method for the first time. The optimum 2.7 % NiSe2/g-C3N4 heterostructure achieved moderate C2H6 generation rate of 46.1 μmol·g−1·h−1 and selectivity of 97.5 % without any additional photosensitizers and sacrificial agents under light illumination. Based on the results of the theoretical calculations and experiments, the improvement of photocatalytic CO2 to C2H6 production and selectivity should be ascribed to the increased visible light absorption ability, unique 3D/2D heterostructures with promoted adsorption of CO2 molecules on the Ni active sites, the type II heterojunction with improved charge transfer dynamics and lowered interfacial transfer resistance, as well as the formation of COCO* key intermediate. This work provides an inspiration to construct efficient photocatalysts for the direct transformation of CO2 to multicarbon products (C2+).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.