Abstract

High selectivity and fast charge separation are two important factors for photocatalytic wastewater treatment. Herein, we prepared a molecular imprinted Ag/Ag3VO4/g-C3N4 photocatalyst (MIP) that exhibited great specific recognition ability along with excellent photocatalytic activity. The ultrathin g-C3N4 nanosheets with high surface are used to prepare. The Z-scheme Ag3VO4/g-C3N4 heterostructure and the surface plasmon resonance of the photoreduced Ag0 together contributed to the improvement of the separation efficiency of photogenerated electrons and holes. In addition, MIP provides the specific recognition ability to preferentially adsorb the target pollutant. The selectivity of photocatalysis was evaluated by the degradation of oxytetracycline and tetracycline solutions. Photoluminescence and transient photocurrent measurements further prove the improved charge separation efficiency of MIP. A plausible photocatalytic reaction mechanism is proposed based on electron spin resonance measurement and the active species trapping experiments, where indicates that the main active species of this photocatalytic process are O2− and h+. This research provides an effective strategy for the simultaneous enhancement of selectivity and activity via molecular imprinting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call