Abstract

In the current study, tetranuclear Ni complex [Ni4(LH)4]·CH3CN (1) (LH3=(E)-2-(hydroxymethyl)-6-(((2-hydroxyphenyl)imino)methyl)phenol) was prepared and incorporated in sulfonic acid functionalized MCM-48 material. This composite nanoporous material was investigated for the adsorption of toxic cationic water pollutant dyes like crystal violet (CV) and methylene blue (MB) from the water solution. Thorough characterization was carried out using a variety of techniques, including NMR, ICP, powder XRD, TGA, SEM, BET, and FT-IR, to verify the phase purity, existence of guest moiety, material morphology, and other crucial variables. The adsorption property was increased with the metal complex immobilization on the porous support. The effect of various parameters on the adsorption process was discussed, including adsorbent dosage, temperature, pH, NaCl concentration, and contact time. Maximum dye adsorption was found at 0.2 mg/ml adsorbent dosage, 10 ppm dye concentration, 6-7 pH, 25 °C temperature, and 15 minutes of contact time. The adsorption of MB (methylene blue) and CV (crystal violet) dyes by Ni complex integrated MCM-48 was effective, with over 99% adsorption achieved in 15 minutes. A recyclability test was also performed, and the material is reusable up to the third cycle, with no notable decline in adsorption found. From the previous literature survey, it is clear that very high adsorption efficiency was achieved using MCM-48-SO3-Ni in considerably short contact time which proves the novelty and effectiveness of the modified material. Ni4 was prepared, characterized, and immobilized in sulfonic acid functionalized MCM-48, and this robust and reusable adsorbent was highly effective for the adsorption of methylene blue and crystal violet dyes with >99% adsorption efficiency in short duration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call