Abstract

Covered stents are stents wrapped with a thin polymeric membrane, and are typically used to treat vessel aneurysms and seal perforated arteries. Current covered stents suffer from restenosis due to limitations in material and fabrication methods which leaves metallic struts directly exposed to blood. We have developed a biocompatible and haemocompatible nanocomposite polymer, polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU). We devised a novel combination of ultrasonic spray atomisation system and dip-coating process to produce small calibre covered stents with metal struts fully embedded within the membrane, which also yields greater coating uniformity. Stent-polymer bonding was enhanced via silanisation and coating of reactive pre-polymer. Platelet studies supported the non-thrombogenicity of POSS-PCU. Biomechanical performances including diametrical compliance, bending strength, radial strength and recoil were evaluated and optimised. This proof-of-principle manufacturing technique could lead to the development of next-generation small calibre adult and paediatric covered stents. These stents are currently undergoing preclinical trial. From the Clinical EditorThe use of stents to treat vascular diseases is now the standard of care in the clinical setting. Nonetheless, a major problem of the current stents is the risk of restenosis and thrombosis. The authors developed a nanocomposite material using polyhedral oligomeric silsesquioxane and poly(carbonate-urea) urethane (POSS-PCU) and incorporated into metallic stents. Preliminary data have already shown promising results. It is envisaged that this would further lead to better stent technology in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.