Abstract
Abstract. Quantitative local paleoclimate reconstructions are an important tool for gaining insights into the climate history of the Earth. The complex age–sediment–depth and proxy–climate relationships must be described in an appropriate way. Bayesian hierarchical models are a promising method for describing such structures. In this study, we present a new age–depth transformation in a Bayesian formulation by determining the uncertainty information of depths in lake sediments at a given age. This enables data-driven smoothing of past periods, which allows better interpretation. We introduce a systematic, machine-learning-based way to establish probabilistic transfer functions which connect spatial distributions of temperature and precipitation to the spatial presence of specific biomes. This includes consideration of various machine learning (ML) algorithms for solving the classification problem of biome presence and absence, taking into account uncertainties in the proxy–climate relationship. For the models and biome distributions used, a simple feedforward neural network provides the optimal choice of the classification problem. Based on this, we formulate a new Bayesian hierarchical model that generates local paleoclimate reconstructions. This is applied to plant-based proxy data from the lake sediment of Lake Kinneret (LK). Here, a priori information on the recent climate in this region and data on arboreal pollen from this lake are used as boundary conditions. To solve this model, we use Markov chain Monte Carlo (MCMC) sampling methods. During the inference process, our new method generates taxa weights and biome climate ranges. The former shows that less weight needs to be given to Olea europaea to ensure the influence of the other taxa. In contrast, the highest weights are found in Quercus calliprinos and Amaranthaceae, resulting in appropriate flexibility under the given boundary conditions. In terms of climate ranges, the posterior probability of the Mediterranean biome reveals the greatest change, with an average boreal winter (December–February) temperature of 10∘C and an annual precipitation of 700 mm for Lake Kinneret during the Holocene. The paleoclimate reconstruction for this period shows comparatively low precipitation of about 400 mm during 9–7 and 4–2 cal ka BP. The respective temperatures fluctuate much less and stay around 10 °C.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have