Abstract

We present infrared absorption studies of solid hydrogen deuteride to pressures as high as 340GPa (100 GPa=1 Mbar) in a diamond anvil cell and temperatures in the range 5-295K. Above 198GPa the HD sample transforms to a mixture of HD, H_{2}, and D_{2}, interpreted as a process of dissociation and recombination. Three new phase lines are observed, two of which differ remarkably from those of the high-pressure homonuclear species, but none are metallic. The time-dependent spectral changes are analyzed to determine the molecular concentrations as a function of time; the nucleon exchange achieves steady state concentrations in ∼20 h at ∼200 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.