Abstract

In actual industrial processes, the working conditions often change, resulting in frequent mode switching. Thus, there are no sufficient samples in the start-up stage of a new mode to build an effective model for anomaly monitoring. Meanwhile, the undesirable delay in collecting more modeling samples has posed a threat for real-time process monitoring. We propose a spatial–temporal feature transfer method to address the new mode cold start monitoring by designing a transfer linear dynamic system (TLDS). TLDS enables us to establish a satisfying monitoring model without requiring many samples from the target mode. Unlike most transfer learning methods, our method features a new domain adaptation strategy that simultaneously transfers the temporal and spatial correlations between the source and target domains instead of aligning the static correlations between the two domains. Thus, it is especially well-suited for the dynamic process industry. Moreover, we use the Kullback–Leibler (KL) divergence to align the state transition and observation generation distributions in two domains and apply the expectation maximization (EM) algorithm to estimate the parameters and states in the TLDS model. The effectiveness of this method is verified through a numerical example and the Tennessee Eastman (TE) process benchmark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.