Abstract
It is common for the working conditions to change with time in actual industrial processes. However, the transition modes of complex industrial processes under different working conditions often have various degrees of dynamic nonstationarity, which makes the traditional process monitoring model based on the stationarity assumption ineffective. In this paper, a Recursive Slow Feature Analysis method based on Stability Factor Partitioning (SFP-RSFA) is proposed for fine process monitoring of transition modes under dynamic nonstationarity characteristics. First, we calculate the stability factor according to the different stationarity characteristics of the production process variables. Then, K-means clustering is carried out according to the stability factor of each variable, and the stability factor of the cluster center is mapped to the interval [0,1] as the smoothing coefficient of the exponential weighted moving average (EWMA), which is applied to each data subblock respectively to highlight the steady-state and dynamic characteristics of the monitoring data subblock. In the online monitoring stage, the monitored data are fed into the subblock recursive slow feature analysis (RSFA) monitoring model. Finally, a comprehensive statistic method is proposed to integrate the subblock monitoring statistics. The Tennessee Eastman (TE) process and actual cement clinker production process were tested and compared with existing RPCA, RCA and RSFA methods. The effectiveness and superiority of the proposed method in the problem of nonstationary transition mode process monitoring are verified.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.