Abstract

Anomalous transconductance with nonmono- tonic back-gate bias dependence observed in the fully depleted silicon-on-insulator (FDSOI) MOSFET with thick front-gate oxide is discussed. It is found that the anomalous transconductance is attributed to the domination of the back-channel charge in the total channel charge. This behavior is modeled with a novel two-mobility model, which separates the mobility of the front and back channels. These two mobilities are physically related by a charge-based weighting function. The proposed model is incorporated into BSIM-IMG and is in good agreement with the experimental and simulated data of FDSOI MOSFETs for various front-gate oxides, body thicknesses, and gate lengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call