Abstract

Li-air batteries are a promising energy storage technology for large-scale applications, but the release of highly reactive singlet oxygen (1O2) during battery operation represents a main concern that sensibly limits their effective deployment. An in-depth understanding of the reaction mechanisms underlying the 1O2 formation is crucial to prevent its detrimental reactions with the electrolyte species. However, describing the elusive chemistry of highly correlated species such as singlet oxygen represents a challenging task for state-of-the-art theoretical tools based on density functional theory. Thus, in this study, we apply an embedded cluster approach, based on CASPT2 and effective point charges, to address the evolution of 1O2 at the Li2O2 surface during oxidation, i.e., the battery charging process. Based on recent hypothesis, we depict a feasible O22-/O2-/O2 mechanisms occurring from the (112̅0)-Li2O2 surface termination. Our highly accurate calculations allow for the identification of a stable superoxide as local minimum along the potential energy surface (PES) for 1O2 release, which is not detected by periodic DFT. We find that 1O2 release proceeds via a superoxide intermediate in a two-step one-electron process or another still accessible pathway featuring a one-step two-electron mechanism. In both cases, it represents a feasible product of Li2O2 oxidation upon battery charging. Thus, tuning the relative stability of the intermediate superoxide species can enable key strategies aiming at controlling the detrimental development of 1O2 for new and highly performing Li-air batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.