Abstract
Singlet oxygen (1O2), as an important active reagent, has found wide applications in photodynamic therapy (PDT), synthetic chemistry, and materials science. Organic conjugated aromatics serving as hosts to capture and release singlet oxygen have been systematically investigated over the last decades. Herein, we present a [6 + 6] organoplatinum(II) metallacycle by using ∼180° dipyridylanthracene donor and ∼120° Pt(II) acceptor as the building blocks, which enables the capture and release of singlet oxygen with relatively high photooxygenation and thermolysis rate constants. The photooxygenation of the metallacycle to the corresponding endoperoxide was performed by sensitized irradiation, and the resulting endoperoxide is stable at room temperature and can be stored under ambient condition over months. Upon simple heating of the neat endoperoxide under inert atmosphere at 120 °C for 4 h, the resulting endoperoxide can be reconverted to the corresponding parent form and singlet oxygen. The photooxygenation and thermolysis products were characterized by NMR spectroscopy and electrospray ionization time-of-flight mass spectrometric analysis. Density functional theory calculations were conducted in order to reveal the frontier molecular orbital interactions and reactivity. This work provides a new material platform for singlet oxygen related promising applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the American Chemical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.