Abstract

• Ferrite hardening is caused by α'-α phase separation. • In LDSS 2101, Cr nitrides impact pitting corrosion more than α'-evolution. • G-phase contributes to a decrease in pitting corrosion in long-term aging. • Spinodal decomposition is the main cause of the drop-in pitting corrosion of DSS 2205. In this study, the relationship between spinodal decomposition and the formation of Ni-rich clusters and G-phase in the ferrite on hardening and pitting corrosion of two thermally aged duplex stainless steels (DSSs) at 475 °C was investigated. Results indicate that, for 2205 DSS, pitting corrosion behavior is influenced by the presence and size of G-phase precipitates for longer aging times, but this contribution is masked by the advanced stage of spinodal decomposition in the ferritic structure. On the other hand, for 2101 DSS, the formation of Cr-richer nitrides impairs pitting corrosion resistance more than spinodal decomposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.