Abstract

Listeria monocytogenes is one of the leading causative agents of foodborne disease outbreaks worldwide. Herein, the antibiofilm effect and mechanism of Mannosylerythritol Lipid-A against L. monocytogenes EGD-e is reported for the first time. MEL-A effectively attenuated biofilm formation while reducing the viability and motility of bacteria within the biofilm in the early stage, and influenced bacterial adhesion by affecting the secretion of extracellular polysaccharides and eDNA. RT-qPCR revealed that MEL-A significantly suppressed the expression of genes involved in flagellar movement and virulence. Untargeted LC-MS metabolomics indicated that MEL-A affected the fluidity and permeability of cell membranes by significantly upregulating unsaturated fatty acids, lipids and glycoside metabolites, and affected protein biosynthesis, nucleotide metabolism and DNA synthesis and repair by significantly downregulating amino acid metabolism and nucleic acid metabolism. These pathways may constitute the key targets of biofilm formation inhibition by MEL-A. Furthermore, MEL-A showed good removal effects on mature biofilms under different temperatures, different materials and milk. Our data indicated that MEL-A could be used as a novel antibiofilm agent to improve food safety. Our study provides new insights into the possible inhibitory mechanism of MEL-A and the response of L. monocytogenes EGD-e to MEL-A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call