Abstract

Riverbanks play the key role in ammonium removal from runoff entering river. Currently, microplastics (MPs) are frequently detected in riverbanks receiving urban and agricultural runoff. Nevertheless, the effect of MPs accumulation on ammonium removal in riverbanks is still unknown. We utilized sediment flow-through reactors to investigate the impact and mechanism of MPs accumulation on ammonium removal in riverbanks. These results revealed that MPs accumulation decreased ammonium removal in sediment by 8.2 %−12.8 % resulting from the reduction in nitrifier abundance (Nitrososphaera and Nitrososphaeraceae) and genes encoding ammonium and hydroxylamine oxidation (amoA, amoB, amoC, and hao) by MPs accumulation. Furthermore, MPs accumulation decreased the substrate and gene abundance of hydroxylamine oxidation process to reduce N2O emission (16.3 %−34.3 %). Notably, mathematic model verified that sediment physical properties changed by MPs accumulation were direct factors affecting ammonium removal in riverbank. It was suggested that both the biotoxicity of MPs and sediment physical properties should be considered in the ammonium removal process. To summarize, this study for the first time comprehensively clarifies the impact of MPs on the ammonium removal capacity of riverbanks, and provides information for taking measures to protect the ecological function of the riverbank and river ecosystem from MPs and ammonium pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call