Abstract

Microplastics (MPs) are a significant environmental health issue and increasingly greater source of concern. MPs have been detected in oceans, rivers, sediments, sewages, soil and even table salts. MPs exposure on marine organisms and humans has been documented, but information about the toxicity of MPs in mammal is limited. Here we used fluorescent and pristine polystyrene microplastics (PS-MPs) particles with two diameters (5 μm and 20 μm) to investigate the tissue distribution, accumulation, and tissue-specific health risk of MPs in mice. Results indicated that MPs accumulated in liver, kidney and gut, with a tissue-accumulation kinetics and distribution pattern that was strongly depended on the MPs particle size. In addition, analyses of multiple biochemical biomarkers and metabolomic profiles suggested that MPs exposure induced disturbance of energy and lipid metabolism as well as oxidative stress. Interestingly, blood biomarkers of neurotoxicity were also altered. Our results uncovered the distribution and accumulation of MPs across mice tissues and revealed significant alteration in several biomarkers that indicate potential toxicity from MPs exposure. Collectively, our data provided new evidence for the adverse consequences of MPs.

Highlights

  • The purpose of this study is to quantify the distribution and accumulation of MPs in mice (Mus musculus) tissues based on fluorescence spectroscopy, and address toxicological responses to MPs exposure using enzymatic biomarkers and metabolomic profiles

  • It is evident that MPs can be transmitted through the aquatic food chain, which is expected to lead to its biological accumulation

  • Food products may represent an important route of entry for MPs into humans, systematic quantitative data of MPs in human tissues have not been reported

Read more

Summary

Objectives

The purpose of this study is to quantify the distribution and accumulation of MPs in mice (Mus musculus) tissues based on fluorescence spectroscopy, and address toxicological responses to MPs exposure using enzymatic biomarkers and metabolomic profiles

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call