Abstract

In order to further reduce the energy consumption of the conventional thermal catalytic oxidation system and improve the degradation efficiency of pollutants, photothermal synergistic catalytic oxidation (PTSCO) system was constructed in this paper with propane as simulated pollutant representing VOCs, and then the modified α-MnO2 catalysts were prepared by using the acid activation method, which were used for the catalytic oxidation of propane in PTSCO. The α-MnO2 with appropriate acid concentration possessed excellent low-temperature reducibility, abundant active oxygen species, fast oxygen migration rate and a large number of acid sites. The optimal catalyst, H0.05-MnO2, had a T90 of 204 °C in the PTSCO system, which reduced by more than 30 °C relative to the α-MnO2 (T90 of 235 °C). Moreover, H0.05-MnO2 demonstrated excellent water resistance and long-term stability (T = 45 h). It was shown that the combination of photocatalysis and thermocatalysis can improve propane degradation by examining the kinetics of propane degradation in the PTSCO system and the conformational relationship of propane degradation by catalysts. Furthermore, a multi-pathway synergistic mechanism between photocatalysis and thermocatalysis in the PTSCO system was proposed. This work provided a theoretical basis for the preparation of high-performance catalysts and the catalytic degradation of propane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.