Abstract
AbstractObtaining the bearing capacity of shallow foundations in a nonhomogeneous soil profile has been a challenging task in geotechnical engineering. In this paper, a new geometric average for the equivalent soil friction angle (ϕ) of various layers beneath shallow strip foundations is used to determine the ultimate bearing capacity. This approach is based on the concept of geometric mean value; however, the method involves applying a power to each variable, which is here the internal friction angle of each soil layer. Numerical methods based on finite elements and also experimental data have been used to verify the presented average method. It will be shown that data obtained from the developed method are well in agreement with those obtained from finite-element analysis and with those obtained from full-scale loading. This agreement is closer when the difference between the shear strength parameters of layers is small, which is the case for sedimentary soil profiles and also for artificially compacted...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.