Abstract

We consider a cosmological model in a Friedmann–Lemaître–Robertson–Walker background space with an ideal gas defined in Weyl Integrable gravity. In the Weyl-Einstein a scalar field is introduced in a geometric way. Furthermore, the scalar field and the ideal gas interact in the gravitational Action Integral. Furthermore, we introduce a potential term for the scalar field potential and we show that the field equations admit a minisuperspace description. Noether’s theorem is applied for the constraint of the potential function and the corresponding conservation laws are constructed. Finally, we solve the Hamilton-Jacobi equation for the cosmological model and we derive a family of new analytic solutions in Weyl Integrable cosmology. Some closed-form expressions for the Hubble function are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.