Abstract

Entanglement-assisted quantum error-correcting codes, which can be seen as a generalization of quantum error-correcting codes, can be constructed from arbitrary classical linear codes by relaxing the self-orthogonality properties and using pre-shared entangled states between the sender and the receiver, and can also improve the performance of quantum error-correcting codes. In this paper, we construct some families of entanglement-assisted quantum maximum-distance-separable codes with parameters $[[\frac{{{q^2} - 1}}{a},\frac{{{q^2} - 1}}{a} - 2d+2 + c,d;c]]_q$, where $q$ is a prime power with the form $q = am \pm \ell$, $a = \frac{{\ell^2} - 1}{3}$ is an odd integer, $\ell \equiv 2\ (\bmod\ 6)$ or $\ell \equiv 4\ (\bmod\ 6)$, and $m$ is a positive integer. Most of these codes are new in the sense that their parameters are not covered by the codes available in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call