Abstract

The entanglement-assisted stabilizer formalism overcomes the dual-containing constraint of standard stabilizer formalism for constructing quantum codes. This allows ones to construct entanglement-assisted quantum error-correcting codes (EAQECCs) from arbitrary linear codes by pre-shared entanglement between the sender and the receiver. However, it is not easy to determine the number c of pre-shared entanglement pairs required to construct an EAQECC from arbitrary linear codes. In this paper, let q be a prime power, we aim to construct new q-ary EAQECCs from constacyclic codes. Firstly, we define the decomposition of the defining set of constacyclic codes, which transforms the problem of determining the number c into determining a subset of the defining set of underlying constacyclic codes. Secondly, five families of non-Hermitian dual-containing constacyclic codes are discussed. Hence, many entanglement-assisted quantum maximum distance separable codes with $$c\le 7$$ are constructed from them, including ones with minimum distance $$d\ge q+1$$ . Most of these codes are new, and some of them have better performance than ones obtained in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.