Abstract
Quantum networks rely on quantum teleportation, a process where an unknown quantum state is transmitted between sender and receiver via entangled states and classical communication. In our study, we utilize a continuous variable two-mode squeezed vacuum state as the primary resource for quantum teleportation, shared by Alice and Bob, while exposed to a squeezed thermal environment. Secure quantum teleportation necessitates a teleportation fidelity exceeding 2/3 and the establishment of two-way steering of the resource state. We investigate the temporal evolution of steering and teleportation fidelity to determine critical parameter values for secure quantum teleportation of a coherent Gaussian state. Our findings reveal constraints imposed by temperature, dissipation rate, and squeezing parameters of the squeezed thermal reservoir on the duration of secure quantum teleportation. Intriguingly, we demonstrate that increasing the squeezing parameter of the initial state effectively extends the temporal window for a successful secure quantum teleportation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.