Abstract

In this study, we investigate the effects of chromatic dispersion on single-photon temporal wave functions (TWFs) in the context of quantum communications. Departing from classical beam analysis, we focus on the temporal shape of single photons, specifically exploring generalized Gaussian modes. From this foundation, we introduce chirped and unchirped Gaussian TWFs, demonstrating the impact of the chirp parameter in mitigating chromatic dispersion effects. Furthermore, we extend our investigation to time-bin qubits, a topic of ongoing research relevance. By exploring the interplay of dispersion effects on qubit interference patterns, we contribute essential insights to quantum information processing. This comprehensive analysis considers various parameters, introducing a level of complexity not previously explored in the context of dispersion management. We demonstrate the relationships between different quantities and their impact on the spreading of TWFs. Our results not only deepen the theoretical understanding of single-photon TWFs but also offer practical guidelines for system designers to optimize symbol rates in quantum communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.