Abstract
We prove that on a large family of metric measure spaces, if the $L^p$-gradient estimate for heat flows holds for some $p>2$, then the $L^1$-gradient estimate also holds. This result extends Savaré's result on metric measure spaces, and provides a new proof to von Renesse-Sturm theorem on smooth metric measure spaces. As a consequence, we propose a new analysis object based on Gigli's measure-valued Ricci tensor, to characterize the Ricci curvature of RCD space in a local way. In the proof we adopt an iteration technique based on non-smooth Bakry-Émery theory, which is a new method to study the curvature dimension condition of metric measure spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.