Abstract

Some qualitative properties of positive smooth solutions to a generalized nonlinear parabolic equation involving f-Laplacian (Lf)(Lf−q(x,t)−∂∂t)w(x,t)=G(w(x,t)), are discussed on Mf×(−∞,+∞), where Mf is a complete smooth metric measure space (with or without boundary), the potential function q(x,t) is smooth at least C1 in x and C0 in t, and G(w(x,t)) is a nonlinear smooth sourcing term. Local and global type space only (elliptic type) gradient estimates are established for this equation under the condition that Bakry-Émery Ricci curvature tensor is bounded from below. As an exploitation of the gradient estimates so derived we obtain a parabolic Harnack inequality and some Liouville type theorems for bounded ancient and eternal solutions. The approach adopted in this paper provides a unified treatment of a large class of nonlinear source terms. To demonstrate this further, cases where G(w)=awρ, a∈R, ρ∈(−∞,0]∪[1,+∞), G(w)=aw|log⁡w|γ,a∈R, a≠0, γ>1 and G(w)=aw(log⁡w)γa≠0, γ≥1 are considered as specific examples. We further show that all the obtained results also hold on weighted manifolds with compact boundary under some lower boundedness assumptions on mean curvature of the boundary and Bakry-Émery Ricci curvature tensor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.