Abstract
Phylogenetic networks are a type of directed acyclic graph that represent how a set X of present-day species are descended from a common ancestor by processes of speciation and reticulate evolution. In the absence of reticulate evolution, such networks are simply phylogenetic (evolutionary) trees. Moreover, phylogenetic networks that are not trees can sometimes be represented as phylogenetic trees with additional directed edges placed between their edges. Such networks are called tree-based, and the class of phylogenetic networks that are tree-based has recently been characterised. In this paper, we establish a number of new characterisations of tree-based networks in terms of path partitions and antichains (in the spirit of Dilworth's theorem), as well as via matchings in a bipartite graph. We also show that a temporal network is tree-based if and only if it satisfies an antichain-to-leaf condition. In the second part of the paper, we define three indices that measure the extent to which an arbitrary phylogenetic network deviates from being tree-based. We describe how these three indices can be computed efficiently using classical results concerning maximum-sized matchings in bipartite graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.