Abstract

Phylogenetic (evolutionary) trees and networks are leaf-labeled graphs that are widely used to represent the evolutionary relationships between entities such as species, languages, cancer cells, and viruses. To reconstruct and analyze phylogenetic networks, the problem of deciding whether or not a given rooted phylogenetic network embeds a given rooted phylogenetic tree is of recurring interest. This problem, formally know as Tree Containment, is NP-complete in general and polynomial-time solvable for certain classes of phylogenetic networks. In this paper, we connect ideas from quantum computing and phylogenetics to present an efficient Quadratic Unconstrained Binary Optimization formulation for Tree Containment in the general setting. For an instance (N,T) of Tree Containment, where N is a phylogenetic network with nN vertices and T is a phylogenetic tree with nT vertices, the number of logical qubits that are required for our formulation is O(nNnT).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.