Abstract

The authors aim to develop a fusion-biomass combined plant concept with a small power fusion reactor. A concern for the small power reactor is the coolant pumping power which may significantly decreases the apparent energy outcome. Thus pressure loss and corresponding pumping power were studied for a designed Tokamak reactor: GNOME. First, 3-D Monte-Carlo Neutron transport analysis for the reactor model with dual-coolant blankets was taken in order to simulate the tritium breeding ability and the distribution of nuclear heat. Considering calculated concentration of nuclear heat on the in-board blankets, pressure loss of the liquid LiPb at coolant pipes due to MHD and friction forces was analyzed as a function of fusion power. It was found that as the fusion power increases, the pressure loss and corresponding pumping power exponentially increase. Consequently, the proportion of the pumping power to the fusion power increases as the fusion power increases. In case of ∼360MW fusion power operation, pumping power required for in-board cooling pipes was estimated as ∼1% of the fusion power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.