Abstract
In addition to its stimulatory effect on prolactin release, the neuropeptide prolactin releasing peptide (PrRP) has been shown to be a mediator of the stress response. To analyze the neurochemical properties of the cells responsive to PrRP and involved in stress modulation, we examined PrRP receptor co-expression with two neuropeptides involved in stress, corticotropin releasing hormone (CRH) and enkephalin (ENK). We find that although PrRP receptor is highly expressed in the parvocellular division of the paraventricular nucleus of hypothalamus (PVN), the majority of the cells expressing PrRP receptor are neither CRH- nor ENK-positive. The only region where the PrRP receptor co-expresses extensively with CRH is the bed nucleus of the stria terminalis (BST). There is also a small number of cells positive for CRH and PrRP receptor in the central nucleus of amygdala (CEA), while the remaining PrRP receptor-positive cells co-express ENK. Furthermore we find that the PrRP receptor-expressing neurons in the brainstem parabrachial nucleus (PB) largely express ENK rather than CRH. From these results we propose a model in which PrRP modulates the hypothalamic–pituitary–adrenal axis through trans-synaptic modulation of hypothalamic CRH release rather than through direct activation of PVN neurons. We also suggest that PrRP may modulate nociception by virtue of its receptor’s co-expression with ENK in PB. Our results provide a theoretical framework by which future studies examining the role of PrRP in brain could be elucidated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.