Abstract

Prolactin releasing peptide (PrRP) was recently identified as the stimulator of prolactin release from the anterior pituitary. PrRP mRNA is expressed in the medulla oblongata and the hypothalamus in the rat brain. The fibers containing PrRP are widely distributed in the brain, therefore, it was postulated that PrRP may act as a neurotransmitter or neuromodulator as well as an endocrine substance. To clarify the developmental changes in the expression of PrRP during brain development, we examined PrRP in rat fetuses and neonates using in situ hybridization and immunohistochemistry. The PrRP mRNA was expressed in the nucleus of the solitary tract (NTS) at embryonic day 18 (E18) and in the ventral and lateral reticular nucleus (VLRN) of the caudal medulla oblongata at E20. The PrRP mRNA in the hypothalamus was first expressed at postnatal day 13 (P13). Reverse transcription–polymerase chain reaction analysis (RT–PCR) for PrRP revealed that PCR product, a 268 bp band, was detected from either E18 in the medulla or P13 in the hypothalamus. Immunodetection with monoclonal antibody against prepro-PrRP revealed intensive staining of cells in the NTS at E18, in the VLRN at E20 or in the dorsomedial hypothalamus at P13. Immunohistochemistry using monoclonal antibody against mature PrRP at P6 showed PrRP fibers to be distributed in the paraventricular hypothalamic nucleus, periventricular hypothalamic nucleus, medial preoptic area, basolateral amygdaloid nucleus, dorsomedial hypothalamus, ventromedial hypothalamus, periventricular nucleus of the thalamus and bed nucleus of the stria terminalis as previously shown in the adult rat. PrRP fibers were also found in the optic chiasm, dorsal endopiriform nucleus, cingulum, intermediate reticular nucleus, and caudal ventrolateral reticular nucleus at P6 and P9. However, PrRP fibers were never found in the above regions in the adult animal. These findings suggest that PrRP fibers originating in the medulla oblongata have been widely distributed in the rat brain during the early postnatal day and PrRP may play various roles in the brain development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call