Abstract

It has been known for 30 years that the output of a repetitively firing neuron or pacemaker can be synchronized (locked) to regularly spaced inhibitory or excitatory postsynaptic input potentials. Conditions for stable locking have been determined mathematically, demonstrated in computer simulation, and locking has been observed in vivo. We have developed a neural spike generator circuit model which exhibits stable locking to externally derived simulated inhibitory or excitatory post-synaptic inputs. Conditions for stable 1 : 1 lock, in which pacemaker output frequency matches that of the periodic input, are derived. These take the form of expressions for stable delay and convergence factor which incorporate known or measurable parameters of the circuit model. The expressions have been evaluated and shown to compare satisfactorily with experimental observations of locking by our circuit model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.