Abstract

The intertwining of space and time poses a significant scientific challenge, transcending disciplines from philosophy and physics to neuroscience. Deciphering neural coding, marked by its inherent spatial and temporal dimensions, has proven to be a complex task. In this paper, we present insights into temporal and spatial modes of neural coding and their intricate interplay, drawn from neuroscientific findings. We illustrate the conversion of a purely spatial input into the temporal form of a singular spike train, demonstrating storage, transmission to remote locations, and recall through spike bursts corresponding to Sharp Wave Ripples. Moreover, the converted temporal representation can be transformed back into a spatiotemporal pattern. The principles of the transformation process are illustrated using a simple feed-forward spiking neural network. The frequencies and phases of Subthreshold Membrane potential Oscillations play a pivotal role in this framework. The model offers insights into information multiplexing and phenomena such as stretching or compressing time of spike patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call