Abstract

Human perception of symmetry is associated with activation in an extended network of extrastriate visual areas. This activation generates an ERP called the Sustained Posterior Negativity (SPN). In most studies so far, the stimuli have been defined by luminance. We tested whether the SPN is present when stimuli are defined by stereoscopic disparity using random dot stereograms (RDS). In Experiment 1, we compared the SPN signal for contours specified by binocular disparity and contours specified by monocular cues. The SPN was equivalent, suggesting that the type of contour does not alter the SPN signal. In Experiment 2 we exploited the unique property of RDS to provide unambiguous figure-ground arrangements. Psychophysical work has shown that symmetry is more easily detected when it is a property of a single object (i.e., within a figure), compared to a property of a gap between two objects (i.e., the ground). Therefore, the target regions in this experiment could either be foreground or background. The SPN onset was delayed when the symmetry was in a ground region. This may be because object formation interferes with the processing of shape information in the ground region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call