Abstract
A cardiac resting phase is used when performing free-breathing cardiac magnetic resonance examinations. The purpose of this study was to test a cardiac resting phase detection system based on neural networks in clinical practice. Four chamber-view cine images were obtained from 32 patients and analyzed. The rest duration, start point, and end point were compared between that determined by the experts and general operators, and a similar comparison was done between that determined by the experts and neural networks: the normalized root-mean-square error (RMSE) was also calculated. Unlike manual detection, the neural network was able to determine the resting phase almost simultaneously as the image was obtained. The rest duration and start point were not significantly different between the neural network and expert (p = .30, .90, respectively), whereas the end point was significantly different between the two groups (p < .05). The start point was not significantly different between the general operator and expert (p = .09), whereas the rest duration and end point were significantly different between the two groups (p < .05). The normalized RMSEs of the rest duration, start point, and end point of the neural network were 0.88, 0.64, and 0.33ms, respectively, which were lower than those of the general operator (normalized RMSE values were 0.98, 0.68, and 0.51ms, respectively). The neural network can determine the resting phase instantly with better accuracy than the manual detection of general operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.